Transforming growth factor-β1 impairs neuropathic pain through pleiotropic effects
نویسندگان
چکیده
BACKGROUND Understanding the underlying mechanisms of neuropathic pain caused by damage to the peripheral nervous system remains challenging and could lead to significantly improved therapies. Disturbance of homeostasis not only occurs at the site of injury but also extends to the spinal cord and brain involving various types of cells. Emerging data implicate neuroimmune interaction in the initiation and maintenance of chronic pain hypersensitivity. RESULTS In this study, we sought to investigate the effects of TGF-beta1, a potent anti-inflammatory cytokine, in alleviating nerve injury-induced neuropathic pain in rats. By using a well established neuropathic pain animal model (partial ligation of the sciatic nerve), we demonstrated that intrathecal infusion of recombinant TGF-beta1 significantly attenuated nerve injury-induced neuropathic pain. TGF-beta1 treatment not only prevents development of neuropathic pain following nerve injury, but also reverses previously established neuropathic pain conditions. The biological outcomes of TGF-beta1 in this context are attributed to its pleiotropic effects. It inhibits peripheral nerve injury-induced spinal microgliosis, spinal microglial and astrocytic activation, and exhibits a powerful neuroprotective effect by preventing the induction of ATF3+ neurons following nerve ligation, consequently reducing the expression of chemokine MCP-1 in damaged neurons. TGF-beta1 treatment also suppresses nerve injury-induced inflammatory response in the spinal cord, as revealed by a reduction in cytokine expression. CONCLUSION Our findings revealed that TGF-beta1 is effective in the treatment of neuropathic by targeting both neurons and glial cells. We suggest that therapeutic agents such as TGF-beta1 having multipotent effects on different types of cells could work in synergy to regain homeostasis in local spinal cord microenvironments, therefore contributing to attenuate neuropathic pain.
منابع مشابه
Flexibilide Obtained from Cultured Soft Coral Has Anti-Neuroinflammatory and Analgesic Effects through the Upregulation of Spinal Transforming Growth Factor-β1 in Neuropathic Rats
Chronic neuroinflammation plays an important role in the development and maintenance of neuropathic pain. The compound flexibilide, which can be obtained from cultured soft coral, possesses anti-inflammatory and analgesic effects in the rat carrageenan peripheral inflammation model. In the present study, we investigated the antinociceptive properties of flexibilide in the rat chronic constricti...
متن کاملThe Effect of Regular Swimming Exercise on the Levels of Renal Matrix Mettaloproteinase-2 and Transforming Growth Factor-β1 in Rats with Diabetes
Background & Aims: Numerous studies have reported the renoprotective effects of exercise in both human and animal models of diabetic nephropathy. However, detailed mechanism of action by which exercise has a favorable influence on renal fibrogenic factors is not yet fully understood. Therefore, the aim of this study was to assess the effect of swimming exercise on the activity ...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملTransforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer
Received: May 31, 2017 Revised: August 08, 2017 Accepted: August 18, 2017 Abstract: Background: Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early stages of tumors while enhancing tumor progression at late stages of tumor progression. Moreover, TGF-β1 is a potent immunosuppressive cytokine within the tumor micro...
متن کاملRecombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model
Objective(s):Diabetic nephropathy is an important long-term complication of diabetes mellitus which appears to be partially mediated by an increase in secretion of transforming growth factor-β (TGF-β). Fibromodulin, the small leucine-rich proteoglycan, has been proposed to be the potent TGFβ1 modulator. In this study, the therapeutic effects of recombinant adenoviral vectors expressing fibromod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular Pain
دوره 5 شماره
صفحات -
تاریخ انتشار 2009